

DATA SHEET

Product Name Radial Terminal Type Resistors

Part Name PRTC . PRTD Series

File No. DIP-SP-044

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Radial Terminal Type Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Excellent flame & moisture resistance
- 1.5 Too low or too high values on Wire-wound & power-film type can be supplied on a case to case basis
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example:

PRTC=PRTC type; PRTD=PRTD type

- 2.2 5th~6th digits:
- 2.2.1 For power rating between 20 watt to 99 watt, the 5th and the 6th digit will show the whole numbers of the power rating itself Example:

40 = 40W

- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example:

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PRTC 20W $\pm 5\%$ 30K Ω B/B)

4. Marking

Code description and regulation:

Wattage Rating
 Nominal Resistance Value

3. Resistance Tolerance. G=± 2%

J: ± 5%

K: ± 10%

4. Pattern:

W: Wire wound M: Power film

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

5. Ratings & Dimension

Туре	Dimension(mm)									Resistance Range					
	W ±1	D ±1	L ±1.5	P ±1	H ±1	S ±0.5	R ±0.5	W1 ±0.3	W2 ±0.2	H1 ±0.2	H2 ±0.2	t ±0.1	Φ ±0.2	Wire Wound	Power Film
PRTC10W PRTD10W	10	9	48	32	18	60	72	6.3	8.0	4.6	8.0	0.8	2.5	1Ω ~820Ω	821Ω ~200KΩ
					19	00	72	0.5					1.6		
PRTC15W PRTD15W	12.5	11.5	48	32	21	60 72	72	6.3	7.6	4.6	8.0	0.8	2.5	1Ω ~1KΩ	1.1KΩ ~200KΩ
					23.5	00	00 /2						1.6		
PRTC20W PRTD20W	12.5	13.5	63	44	21	74	74 86.5	6.3	7.6	4.6	8.0	0.8	2.5	2Ω ~1.2KΩ	1.3KΩ ~200KΩ
					25	74							1.6		
PRTC30W PRTD30W	19	19	75	54	32	88 105	105	105 6.3	7.6	4.6	8.0	0.8	2.5	3Ω	,
					30		105						1.6	~1.5KΩ	/
PRTC40W PRTD40W	19	19	90	70	32	104 122							2.5	6Ω	
					32		6.3	8.0	4.6	8.0	0.8	1.6	~1.5KΩ	/	
PRTC50W PRTD50W	19	19	90	70	32	104			8.0	4.6	8.0	0.8	2.5	6Ω ~1.5KΩ	
					30		122	6.3					1.6		/

6. Derating Curve

Heat rise chart:

Percent rated load (负载比率)(%)

Derating curve:

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Structure

NO.	NAME	MATERIAL GENERIC NAME					
1	Ceramic case	Al ₂ O ₃ CaO					
2	Filling materials	SiO ₂					
3	Bracket	Iron					
4	Resistor	Metal Oxide Film					
5	Body	Al_2O_3					
6	Cap	Iron					

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)					
Temperature Coefficient	<20Ω: ±400PPM/°C ≥ 20Ω:±350PPM/°C	$4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)} \\ R_1: \text{ Resistance Value at room temperature } (t_1) ; \\ R_2: \text{ Resistance at test temperature } (t_2) \\ t_{1:} +25 \text{ °C or specified room temperature} \\ t_{2:} \text{ Test temperature } (\text{-}55 \text{ °C or } 125 \text{ °C}) \\ \end{cases}$					
Short-time overload	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.					
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.					
Resistance to soldering heat	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C±5 °C solder for 10±1 seconds.					
Humidity (Steady state)	Resistance change rate must be in $\pm (5\% \! + \! 0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90~95%RH relative humidity					
Load life in humidity	Resistance change rate must be in Wirewound: ±5% Power Film:<100KΩ: ±5% ≥ 100KΩ: ±10%	7.9 Resistance change after 1000 hours (1.5 hours "ON" \rightarrow 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.					
Load life	Resistance change rate must be in Wirewound: $\pm 5\%$ Power Film:<100K Ω : $\pm 5\%$ $\geq 100K\Omega$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 ± 2 °C ambient.					
Low Temperature Storage	Resistance change rate must be in Wirewound: ±5% Power Film:<100KΩ: ±5% ≥ 100KΩ: ±10%	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.					
High Temperature Exposure	Resistance change rate must be in Wirewound: $\pm 5\%$ Power Film:<100K Ω : $\pm 5\%$ $\geq 100K\Omega$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.					

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

[©] Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice